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A new formulation of relativistic elastomechanics is presented. It is free of any assumption 
about the existence of a global relaxation state of the material. The strain, the stress and the 
energy-momentum tensors are expressed in terms of the first-order derivatives of a field de- 
scribing the configuration of the material. Its elastic properties are completely determined by a 
scalar function describing the dependence of the mechanical energy accumulated in the de- 
formed material upon the three invariants of the deformation. The stress-strain relations are 
generated in a canonical way by this function. Dynamical equations of the theory are derived 
from the variational principle. They form a hyperbolic system of second-order partial differ- 
ential equations for the unknown field. Energy-momentum conservation laws are conse- 
quences of the Noether theorem. The hamiltonian formulation of the dynamics and the linear 
version of the theory are also discussed. 
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1. Introduction 

Classical, non-relativistic elasticity is a good example of a lagrangian, hyper- 
bolic field theory. The configuration of an elastic body is described at each instant 
of time by a three-component field called a displacement vector. The local defor- 
mation of the material is described by the strain tensor defined as a combination 
of the first derivatives of the field. The time-dependent configuration has to sat- 
isfy a system of second-order hyperbolic partial differential equations [ 1,2 1. These 
dynamical equations can be derived from the first-order variational formula and 
the energy-momentum conservation laws follow from the invariance of the la- 
grangian via the standard procedure based on the Noether theorem. 

The special feature of this theory is that the dynamical equations are actually 
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equivalent to the conservation laws if the energy-momentum tensor is expressed 
in terms of the first derivatives of the unknown field via the stress-strain rela- 
tions. This observation was a starting point of many attempts to formulate the 
relativistic version of elasticity theory [ 3-71. In fact, it is easy to generalize the 
energy-momentum conservation laws to the fully relativistic situation. In this 
way we obtain the first-order differential equations for the energy-momentum 
tensor [ eq. (35 ) of the present paper] which have been proposed by all the above 
authors. The trouble is, however, that the theory is not closed if we are not able 
to express the energy-momentum tensor in terms of the first derivatives of the 
field describing the configuration of the material. This is the reason why none of 
these theories has been consistently formulated as a hyperbolic field theory. 

The problem consists therefore in finding the relativistic description of the 
configuration of the material. In a generic, curved space-time there is no ana- 
logue of a displacement vector. Some authors propose to describe a configuration 
of an elastic body at a given instant of time as a mapping between the actual 
distribution and the hypothetic “equilibrium distribution” of the matter in the 
three-dimensional physical space [ 8,9]. A diffeomorphism between three-di- 
mensional manifolds is again (at least formally) a three-component field and it 
is possible to formulate in this way a general-relativistic version of the theory of 
elasticity. The assumption about the existence of a global equilibrium configura- 
tion is, however, poorly justified from the physical point of view. Moreover, it 
violates the relativistic invariance of the theory. 

A simple way to overcome this difficulty is to introduce an abstract, three-di- 
mensional “material space” as a collection of all “particles” of the idealized ma- 
terial [ lo- 12 ] and to treat consequently “material coordinates” as field variables 
of the theory. In the present paper we propose a simple formulation of relativistic 
elasticity theory based on this approach. It is fully relativistic, intimately non- 
linear, hyperbolic and lagrangian. Our theory is a straightforward continuation 
of the formulation of hydrodynamics given by one of us [ 13- 15 1. The difference 
between a fluid and an elastic body consists only in different constitutive rela- 
tions, but the entire dynamical structure of both theories is the same. 

We show in the last part of the paper that the linearized version of our field 
equations coincides with the equations proposed by some authors (see refs. 
[ 4,16,17 ] ). However, relativistic elasticity is important not only because of its 
linearized version, which can be used for the description of gravitational wave 
detectors and generators. Its theoretical importance lies in the fact that it pro- 
vides a simple, self-consistent model of stable relativistic matter and we hope it 
to be useful in the description of stellar matter in many astrophysical problems. 
A first application of the present formulation to the relativistic equilibrium equa- 
tions of a non-rotating star will soon be published [ 18 1. 
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2. Kinematics 

Let .M be the general-relativistic space-time equipped with the fixed pseudo- 
riemannian metric tensor gPy (,u, Y=O, 1, 2, 3), whose signature is ( -, +, +, 
+ ). Denote by 2 the collection of all idealized “molecules” of the material or- 
ganized in an abstract three-dimensional manifold called the material space. The 
space-time configuration of the material is completely described if a mapping 

is specified; it assigns to a given point of the physical space-time (i.e. to a given 
point of the space and a given instant of time) the “molecule” of the material 
which passes through this particular point at this particular time. Generically, the 
mapping 9 is constant on one-dimensional submanifolds (curves) in A which 
correspond to the world lines of the molecules. We assume these lines to be 
timelike. It is easy to prove that the dynamics of the theory (section 5 ) prevents 
the lines from becoming spacelike. 

Given a coordinate system (e) (a= 1,2,3) in Z and a coordinate system (xP) 
in A, the configuration of the material is described by three fields p=r”(x@). 
The physical laws describing the mechanical properties of the elastic material will 
be formulated in terms of a system of second-order hyperbolic partial differential 
equations for the three unknown fields r. 

The tangent mapping 

is uniquely described by the 3 x 4 matrix composed of partial derivatives of the 
fields, (p,,) := (a,r), and may be called the relativistic deformation gradient. 
Our assumption about the character of world lines means that the matrix has 
maximal rank and that its kernel (i.e. the collection of vectors uc satisfying the 
equation uPecc=O) is a one-dimensional timelike subspace of the tangent space 
Td. If, moreover, the space-time is temporally oriented we may uniquely choose 
uP in such a way that it belongs to the future light cone and is normalized. This 
vector is called the velocity field of the matter. Its components uP are uniquely 
given by the following conditions: 

t.dy+O , gp,u’uv=u’u, = - 1, u”>o. (1) 

Solving them, we may express uP as a non-linear function of the components cr 
of the deformation gradient and of the space-time metric g,,“. 

Given the space-time configuration of the matter r” = r” (x@) we may thus de- 
compose at each point XEM the tangent space Tfi into its parts tangent and 
orthogonal to the velocity field. The corresponding projector operators are de- 
fined as 
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3. Geometric structure of the material space 

We assume the material space Z to be equipped with a riemannian (positive) 
metric yob called the material metric. The metric is “frozen” in the material and 
is not a dynamical object of the theory. To understand the physical meaning of 
the material metric we assume that each “infinitesimally” small portion of the 
material will tend spontaneously to the relaxed state when no external forces act 
on it. The metric y describes the space distances between neighbouring “mole- 
cules”, calculated in the relaxed state of the material, with respect to the rest 
frame. To measure the components yob( <) in this way we have to relax the mate- 
rial at different points <separately since global relaxation of the material may not 
be possible. This means that the space Z may not be isometric with any three- 
dimensional subspace of the space-time. The same phenomenon occurs in clas- 
sical (non-linear) elastomechanics, when the material exhibits internal stresses 
frozen in it. In this case no global relaxation is possible and the structure of the 
material has to be described with a curved material metric, even if the physical 
space is flat. 

From the mathematical point of view, the components yab=yob( c) should be 
considered as given functions. They describe axiomatically the properties of the 
material we consider. The theory is, however, fully invariant with respect to re- 
parametrizations of the material space. This means that also classical, non-rela- 
tivistic elasticity may be formulated in terms of curvilinear coordinates, which 
make the dependence yob( <) highly non-trivial, even if the material metric is flat. 

The metric structure of the material space enables us to introduce a volume 
structure in Z, 

(2) 

where pO =pO (<) is given axiomatically as the density of the material (moles per 
unit volume of the relaxed material). In most applications the material is homo- 
geneous and p. is constant. Denoting h =pOJdety, formula (2 ) becomes identi- 
cal with formula ( 16) of ref. [ 141 and the entire construction of the matter cur- 
rent given below is therefore identical with the corresponding construction for 
hydrodynamics. 

The pull-back of the volume form CO to the space-time is a differential three- 
form in the four-dimensional manifold A, i.e. a vector density. We denote it by J 
and call it the matter current. To calculate its components we substitute in for- 
mula (2) the coordinates e by the values of the field configurations treated as 
functions on space-time, 
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The matter current is a priori conserved due to its geometric construction. In- 
deed, the exterior derivative of J is equal to the pull-back of the exterior deriva- 
tive of o. It vanishes identically being a four-form in the three-dimensional space 
Z 

(a,J~)dw’~dx’hdX*)\dX~=dJ=d(~w)=~(dw)=O, (4) 

or, equivalently, 

a,Jp=o. (5) 

The last identity may also be calculated directly from formula (3) without any 
reference to the geometric proof (4). 

Let us observe that Jj’e,,=O, since eP”PO~l V[2P[3 ,,e P is the determinant of a 
matrix with two identical columns. This means that J” is proportional to the ve- 
locity field, 

J’=pJ-g u’ , (6) 

where the scalar functionp= (g-‘JpJ,)‘/*, with Jp given by ( 3 ) , is a non-linear 
function of the components of the deformation gradient. Its physical meaning is 
the actual, rest frame matter density. 

4. Relativistic strain tensor 

Given the space-time configuration of the elastic material, we define the pull- 
back of the material metric y as h := ‘Py, or, in terms of coordinates #’ 

h,, = Yobr(l ,,cb Y . (7) 

The tensor h is obviously symmetric and orthogonal to the velocity field due to 
the relation 

h/J4Y=)‘Clbr(l ,,lb .U’=o . 

We define the following symmetric operator: 

K:=g-‘h+ U, 

whose components are 

K:: =gwhpv -u%, . 

“’ This approach is similar to the one used in ref. [ 121. However, those authors rather prefer the 
“push-forward” of the physical metric to the material space, defining in this way the relativistic 
Piola strain tensor. This terminology is slightly misleading since the information about the defor- 
mation of the material is actually carried by the difference between two metric tensors (the mate- 
rial one and the physical one) and not by only one of them. 
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Observe that the velocity vector is an eigenvector of K with eigenvalue 1, 

K+4”=Ufl. (8) 

If the coordinates (xP) are chosen in such a way that they correspond to the 
local rest frame at the point in which we calculate K, its components are given by 

/I 0 .o o\ 

(gmkhk,) ) - (9) 

This proves that Kis positive definite. If, moreover, the material is relaxed at this 
particular point, the material metric coincides with the physical metric. This 
means that the two positive metric tensors hkl and &I (k, /= 1,2, 3) coincide and 
we have gkmh,,=8f. The operator K becomes therefore the identity operator if 
and only if the material is locally relaxed, and the deformation consists in the fact 
that K is different from unity. Any function of K which vanishes on the identity 
operator may be used to measure the deformation. A possible choice could be 
simply 4 (I-K) (similar to “the relativistic lagrangian strain tensor” proposed 
by G.A. Maugin). We prefer, however, another definition of the strain tensor 
which makes the theory (and especially the stress-strain relations) particularly 
elegant N2: 

s:= - ilog K . (10) 
We call the symmetric operator S the relativistic strain tensor. It measures the 
relative changes of the dimensions of the material along the principal axes of the 
deformation and is obviously dimensionless. 

Due to formula (8), the velocity vector is an eigenvector of any operator:val- 
ued function of K. So we have 

(K-~)+.P=U~, (11) 
S+4”=0. Y (12) 

The tensor S contains the complete information about the local state of the 

“2 Another nice feature of our definition is that the strain tensor is not subject to any constraint when 
the deformation becomes strong. This is not true in the case that the strain tensor is defined as the 
difference. In this case one has to worry during the evolution that the strain produces a positive 
operator when added to the identity. Mathematically, it is extremely difficult to handle such con- 
straints. Of course, both definitions coincide in the linear approximation. 
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matter. In particular, the matter density p can also be calculated in terms of S. 
Indeed, formulae (3) and (6) imply 

pJ-gu”=J”=poJdety9, (13) 
where we denoted 

~:=~oupa<1y~2p~3~=e ohk’r’hr2k53,=EhWr’hr2k53,=det(r”k). (14) 

In the rest frame we have u”= 1 and Fg=Jdetg,,. Hence, formulae (7), (9) 
and ( 13 ) imply 

det K= (det gmk) (det hkl) 

=(det&&‘(det )‘) [det(ek)12= 2 g2= 
2 

. 

Both the quantities det K and (p/~~)~ are, however, scalars and therefore the 
identity 

det K= (P/P, 1’ 

holds in any frame. Taking the trace of ( 10) we have 

Tr S= - $Tr log K= -log ,/&t%, 

which finally implies 

p=po Jdet K=p, exp ( - Tr S) . (15) 

5. Internal energy of elastic deformations 

We assume the internal energy of an elastic deformation, accumulated in an 
infinitesimal portion of the material, to be invariant with respect to its space- 
time orientation. In this way the internal energy may depend on the three invari- 
ants of the strain tensor only (one of the eigenvalues of the strain vanishes a 
priori). To define an appropriate set of invariants, we decompose the strain ten- 
sor into a part proportional to the projector E and a traceless part 3 

S:: =IT:: + ;S;Ef: , (16) 

where 3; = 0, and introduce the following three invariants: 

a=Tr S=S$, jj= fTr s2 = ‘spsy 2 Y P’ e= fTr s3= ig;$? p’ (17) 
Formula ( 15 ) implies the interpretation of the first invariant as the relative 
compression of the material: 

(18) 
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The second invariant measures the deviation of the deformation from spherical 
symmetry. The last invariant is of a third order and does not appear in the linear 
version of the theory; it measures the deviation of the deformation from cylindric 
symmetry (see the lecture notes [ 191). We assume therefore that the molar in- 
ternal energy U, of an elastic deformation depends on the fields r” and their first 
derivatives only via the above invariants #3. The function ul= uI( CY, j?, 0) has to 
be considered as given axiomatically. Its choice is equivalent to the choice of the 
constitutive equations of the material. However, to assure the stability of the 
model, the function uI is supposed to vanish and to have a minimum in a locally 
relaxed state of the matter (i.e., when all the invariants vanish). This means that 

ul=fAa2+Bp+O(3) ) (19) 

where 0( 3) is a function of (at least) the third order in the strains in the neigh- 
bourhood of zero. The simplest model of an elastic material consists in putting 
this function equal to zero. In this case the energy is a quadratic function of the 
strain and the constants A and B are related to the usual Lam6 coefficients 2 and 
p by the following relations: 

LA- fB, p=fB. 

We will call this model quasi-linear. In general, a non-linear behaviour of the 
material gives rise to a more complicated functional dependence of the elastic 
energy. In particular, there is no reason for the independence of uI from the third- 
order parameter 19. 

The total energy (per mole ) is equal to 

e=m+u,, 

where m denotes the molar rest mass of the material (we use geometric units with 
the velocity of light equal to one). The correspondence principle implies that the 
lagrangian density of the theory equals 

A=-pJ-ge=-J-gc, (20) 

where E =pe denotes the rest frame energy per unit volume. The lagrangian /i has 
to be considered as a function of the independent variables xJ‘, the unknown fields 
r” and their first derivatives c P. The dynamical equations of the theory are ob- 
tained from the variational principle SJ/1=0 and can be written as Euler- 
Lagrange equations, 

a, a/i/a$.- a/i/ayo=o . (21) 

The above theory contains hydrodynamics as a particular case when the energy 
depends on Q only [ 13-l 5 1. 

” For an inhomogeneous material we could admit also an a priori dependence of u, upon the value 
of the fields r”; the generalization of our results to this case is obvious. 



.I. KQowski and G. Magli /Relativistic elastomechanics 215 

6. Noether theorem and energy-momentum conservation 

The Euler-Lagrange equations (2 1) can be written as 

appo p= a/i/ap, (22) 

with the canonical momentum Pnj’ defined as usual, 

P, p:=a/i/app. (23) 

Geometrically, P,j’ is a mixed tensor density defined on the Cartesian product 
Ax Z. It can be called the relativistic Piola-Kirchhoff momentum tensor. We show 
in the appendix the following formula: 

where by ,!?f,!?i we denote, as usual, the “tilde” part of the tensor $f$. The above 
formula enables us to express the Piola-Kirchhoff tensor in terms of the fields 
and their derivatives if the function e=e(a, p, 19) is known. In this way the dy- 
namical equations (22 ) become second-order differential equations for the un- 
known fields e. 

To analyze the physical meaning of these equations, we will rewrite them in the 
form of energy-momentum conservation, 

V&=0, (25) 

where the energy-momentum tensor density is defined by the usual canonical 
formula, 

t:::=Pa “r”,-&!A . (26) 

The conservation law (25) is implied by the dynamical equations (22) via the 
standard Noether procedure which we use in the sequel. The particular feature of 
the mechanics of continua formulated as a field theory is that eqs. (25 ) are sim- 
ply equivalent to eqs. (22 ) , even if (25 ) contains four equations while (22) con- 
tains only three equations. To prove this equivalence, we calculate the partial 
derivatives of the components of the energy-momentum tensor, 

Using the symmetry of the second derivatives of r” we obtain 
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This formula holds in any coordinate system xP. For a given point in space-time 
we can always choose a coordinate system such that the derivatives of the metric 
vanish at this particular point. In this particular system the partial derivatives 
become equal to covariant derivatives and the above equality reads 

(27) 

But both sides of the above formula are covector densities. Hence, once proved 
in a particular coordinate system, the formula remains valid in any system due to 
its tensorial character. Observe that we proved eq. (27) using only the definition 
of the energy-momentum tensor, without assuming field equations. This means 
that (27 ) is an identity. It remains valid for any configuration r” = r” ( xP) . Tak- 
ing into account the relation uPrO,,=O, we see that the identity 

u”Vpt~=O (28) 

holds due to the definition of t$ in terms of the fields and their derivatives. Hence, 
only three equations among eqs. (25 ) are independent, and the maximal rank of 
the matrix ( cP) implies the equivalence of the conservation laws (25 ) with the 
dynamical equations (2 1). 

7. Stress-strain relations 

Formulae (24 ) and (26 ) imply 

Using ( 11) we have 

(~-‘)Pu~~b~boT”~=(~-‘)Pu(~,,+UoUu)=~~++pU~=E~. 

Using also the identities i?;EP, =,!?$ and S!?iEP, =S$V, we obtain 

(29) 

The energy-momentum tensor may therefore be decomposed into two parts, one 
parallel and the other orthogonal to the velocity field: 

t::=-~gEU+4”-T;, 

where the orthogonal part is given by the formula 
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(31) 

This part may be called the relativistic stress tensor or the Cauchy tensor. Equa- 
tion (3 1) gives the stress tensor in terms of the strain tensor. The relation is uni- 
versal and the response of the material to the deformation is uniquely given by 
the three coefficients: a-‘ae/&x, ae/ap and se/M. For a general, non-linear ma- 
terial the coefficients depend on the deformation. In the particular case of the 
quasi-linear model the coefficients are constant: 

1 de =A de B -- -= de o -= CY aff 3 ap 7 a0 3 

and the stress-strain relations become “quasi-linear”, 

z; = -pJ-g(AE:S; +I@$) . 

Similarly as in the classical theory, the Cauchy tensor can be further decom- 
posed into a part proportional to the “space projector” and a trace-free part, 

z; = -J--g(pEf! +zg ) 

where p= -p i3e/a(u is the pressure and the trace-free tensor 

(32) 

may be called the relativistic deviatoric tensor. Observe that, similarly to the clas- 
sical theory, the pressure may be calculated as minus the derivative of the energy 
with respect to the specific volume v= 1 /p of the matter, 

de ae ap 
p=--p,,=-p--=p 2 ae -=- ;. 

ap aa ap 

We have finally #4 

t;=-J-g(w%,+pE’:+Z’:) 

=-J-g[ (E+p)zPU”+p&!+Z~]. 

The field equations (25 ) can therefore be rewritten in the following way: 

VJ(E+p)U~U,+p6::+Z::]=O, 

(33) 

or, equivalently 

u”VP[(E+p)Uq+(E+p)UV~u,=-P;p-V~z::. (34) 

w The sign of t: has been chosen in such a way that 18 =F’, OeO -A = H is the hamiltonian of the 
field. The identity P’= -2 &i/ag,, can be easily proved. 
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Due to the identity ~“VJ; =O the above equation is equivalent with its part or- 
thogonal to the velocity. Acting on both sides with the projector E we finally ob- 
tain the following equivalent version of the dynamical equations: 

(e+p)~PV~u,= -E;( VJI+ V’Z~4) . (35) 

We stress that the above equations contain relativistic hydrodynamics as a partic- 
ular case, when the internal energy depends only on the matter density p or, 
equivalently, on LY. In this case we have se/a/3= de/&% 0 and therefore Z; = 0. 

The interaction of the elastic material with other physical fields (electrody- 
namical, gravitational) may be obtained adding the corresponding lagrangian for 
the new field (together with the lagrangian of the interaction) to the mechanical 
lagrangian (20) and extending the variation to the degrees of freedom of the new 
field. In particular, we may treat the physical metric g,, as a dynamical object 
whose dynamics is governed by the Einstein equations. The complete theory can 
be obtained from the total lagrangian density, which is the sum of the Einstein- 
Hilbert lagrangian - (Il87r)J-g R and the lagrangian (20). Due to gauge in- 
variance of the theory the mechanical equations (25 ) are in this case implied by 
the Einstein equations via the Bianchi identities. 

8. Remarks on the hamiltonian formulation of the dynamics 

Having fixed the 3 + I decomposition of space-time we may formulate the dy- 
namics of the field in terms of the initial value problem. The canonical variables 
of our theory are e (configuration) and Pa0 (canonical momenta). The Poisson 
bracket between these quantities assumes its canonical (delta-like) form. 

Similarly as in hydrodynamics, we may describe the Cauchy problem in terms 
of physical quantities (like, e.g., the density scalar p and the velocity components 
up) rather than in terms of canonical variables. Expressing these quantities in 
terms of canonical configurations and momenta we may easily calculate the “non- 
canonical” Poisson bracket between them. The resulting formulae for the density 
and the velocities are obviously the same as in hydrodynamics (they have been 
calculated in ref. [ 15 ] ). Unlike in hydrodynamics, the four objects p, uk do not 
uniquely describe the gauge-independent part of the Cauchy data and two addi- 
tional observables are necessary. It may be shown that the remaining parameters 
of the deformation (i.e., /3 and 0) can be used for this purpose. In this way we 
obtain an infinite-dimensional hamiltonian system with non-canonical symplec- 
tic structure, which will be discussed in a future paper. 

9. Linear version of the theory 

The linear approximation of the theory may be obtained assuming that the 
configuration of the material does not differ considerably from a given reference 
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configuration r” = x“. We introduce the displacementfield @ which measures this 
difference, 

$t”(xq =r”(xfl) -xa , 

We assume also that the gravitational field is weak, i.e., gpv=++fp, is a small 
perturbation of the minkowskian flat metric qrv. We treat therefore both #” and 
f,,” as uan i i q t t es f f t d o rrs or er. For the sake of simplicity suppose that the material 
metric is flat, Yob= S,,. 

The theory has to be invariant with respect to gauge transformations 
x%xP- VP, where w@(x”) is any space-time vector field. The transformation 
acts in the following way on the dynamical objects of the theory: 

v4’I+ cy” 3 fp” e&Y +w,,,, (36) 

(the symmetric part of the derivative of y/ corresponds to the Lie derivative of 
the metric q with respect to the gauge field I,u). 

We begin calculating the first-order development of the matter current ( 3 ) : 

J’=p,,fiy P’O<’ vr2+,r3 d 

where the dot denotes the time derivative. Consequently 

Moreover 

The covariant version of this relation reads 

~“=~~~“+f~Y~~cl~tlYo+-~o~Yo-~‘~“,+f”o~ 
and therefore the first-order development of the projector U is given by 

~“~~=wh+foo&~“cl -&%tl”l+&%,) +&if”0 3 
or 

(38) 

(39) 

To calculate the linear approximation of the strain tensor we observe that 
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or 

S;--$(h;--u”u,-6:). 

But, in the linear approximation, we have 

h I” =&bmb, +42b(Qw”, +@b”@) , 

hl: = W-f/“‘)h,v 

or, equivalently, 

h;= G 0 'I # 
oj-(hj 6j+2qik#(kj)-fj 

Using (39) we finally obtain that only the space-space components of the strain 
tensor do not vanish, i.e., SE = 0 = So” and 

sj=-Ifj-qik#(kj), i,j, k= 1,2, 3. 

We stress that the above quantity is invariant with respect to the gauge transfor- 
mations (36). Consequently, also the strain invariants LY and B are gauge 
independent, 

CY=S$=S$+&q5kk, 

p= f&pq” = fp& 

=4[(~W-~(“))(~~-~(,))-j(~~-~“,)‘]. 

Taking the Taylor expansion of uI up to second-order terms in the strains we 
obtain the quasi-linear model, 

uI N $Aa’+BB 

N4A(~f-~kk)2+fB[(-IfW-~(kl))(-~kl-~(kl))-~(-Ifr-~kk)2], 

with coefficients A and B defined by the derivatives of uI at zero. The correspond- 
ing expressions for the matter density and the pressure read 

p= -p(au,jacf) = -@.Y-p,A(@kk--~~). (40) 

To calculate the deviator-k tensor 

Zf= --PBS; 2: -poB(Sf - )E;cY) , 

observe that it is sufficient to take the zero&order expression for the projector E 
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since a is already of first order. We have 

E~=6::+GC;~yo+O(l). (41) 

Finally, only the space-space components of Zt: do not vanish, 

zk’=-Bpo[~M-@ ‘“‘-f,f’(ltf~+y] . (42) 

The linear version of eqs. ( 35 ) reads: 

Poms6~~,u”=-(6::+Gt;tlo”)<a,p+a,z~> (43) 

(covariant derivatives of first-order objects have been replaced by partial deriv- 
atives since the Christoffel symbols are of first order). To calculate the covariant 
derivative of u, we need the first-order approximation of the Christoffel symbols, 

2r~“=tlaS(drfvs+d.f,,+a,f,“> * 

Hence, 

The above expression vanishes for Y = 0 [in agreement with the vanishing of the 
right hand side of (43 ) 1, an therefore the dynamical equations reduce to 

mpO ( - $‘qkt +jok - $$&> = - akp- a/z; . 

Using the explicit formulae (40) and (42 ) for p and Z we finally obtain 

m(~k-jcOk+fakfOO)=-(A-~B)ak(--Lrj-~~) 

-Bdi(-+fi-Tj’i$tik)). (44) 

We stress that both sides of the equation are gauge invariant. The right hand side 
can be called the elastic force. It reduces to the classical elastic force when the 
space-time metric is flat cf,,=O). The term m & - fa,&) can be interpreted 
as the gravitational force and eq. (44) is the Newton equation. 

The present formulation of the relativistic elasticity theory was conceived in 
1988, when the first author (J.K. ) was lecturing the mechanics of continua in 
Italy, at the University of Milan [ 19,201. Both authors are very grateful to Pro- 
fessor Luigi Galgani, who was the spiritual father of this adventure. 

Appendix. Proof of the stress-strain relation formula 

The lagrangian density (20) depends on the derivatives of the fields only via 
the components of the tensor K. Therefore 
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But 

and consequently 

where we denoted 

(45) 

To calculate the derivatives of the invariants of the tensor S= - flog K with re- 
spect to the components of K we use the following formula of operator calculus: 

& Trf(K) = cf ’ (K) )i j 
Y 

wherefis a differentiable function of a real variable,f ’ its derivative and where 
f(K) denotes the operator-valued function of the operator K. Together with the 
definitions ( 17 ) the above formula implies 

acqaK,,=-t(~-y,, 

ap/aK,,= -@;(~-y, 

aejaKp,= -~~(K-~p. 

Moreover, formula ( 18 ) implies 

ap/aK,, =po ae-yaK,, = fp(~-1) pv. 

Hence, 

(47) 

P NW, - 2 +‘(K-‘)P’- $sB(K-1)“” 1 . 

(48) 
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Substituting (48 ) and (49) in (45 ) we finally obtain formula (24). 

(49) 
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